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Background. Cost-effectiveness analysis (CEA) methods
fail to acknowledge that where cost-effectiveness differs
across subgroups, there may be differential adoption of
technology. Also, current CEA methods are not amenable
to incorporating the impact of policy alternatives that
potentially influence the adoption behavior. Unless CEA
methods are extended to allow for a comparison of poli-
cies rather than simply treatments, their usefulness to
decision makers may be limited. Methods. We conceptua-
lize new metrics, which estimate the realized value of
technology from policy alternatives, through introducing
subgroup-specific adoption parameters into existing
metrics, incremental cost-effectiveness ratios (ICERs) and
Incremental Net Monetary Benefits (NMBs). We also pro-
vide the Loss with respect to Efficient Diffusion (LED)
metrics, which link with existing value of information
metrics but take a policy evaluation perspective. We illus-
trate these metrics using policies on treatment with com-
bination therapy with a statin plus a fibrate v. statin

monotherapy for patients with diabetes and mixed dysli-
pidemia. Results. Under the traditional approach, the
population-level ICER of combination v. monotherapy
was $46,000/QALY. However, after accounting for differ-
ential rates of adoption of the combination therapy (7.2%
among males and 4.3% among females), the modified
ICER was $41,733/QALY, due to the higher rate of adop-
tion in the more cost-effective subgroup (male). The LED
metrics showed that an education program to increase the
uptake of combination therapy among males would pro-
vide the largest economic returns due to the significant
underutilization of the combination therapy among males
under the current policy. Conclusion. This framework
may have the potential to improve the decision-making
process by producing metrics that are better aligned with
the specific policy decisions under consideration for a
specific technology. Key words: economic evaluation;
policy; technology diffusion; heterogeneity; cost-
effectiveness. (Med Decis Making XXXX;XX: xx–xx)

S ince its development, cost-effectiveness analysis
(CEA) has been one of the most prevalent meth-

ods in economic evaluations.1,2 CEA has followed the
notion that, if a technology is deemed cost-effective,
it should be made available for use in the healthcare
system.3,4 However, determination of the incremental
cost-effectiveness ratio (ICER) is usually based on
intention-to-treat effects from clinical trials, which
rely on adoption rates within the trial. Certainly,
under a homogeneous treatment-effects assumption,
differential adoption of this technology across sub-
groups would yield the same population-level ICER.
When this stringent assumption is relaxed, however,
a CEA result becomes limited because it does not
incorporate the extent to which medical technology is
used in practice and how this extent of use is likely
to change over time (i.e., technology diffusion).5,6
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From an evaluation perspective, such practice
of CEA is possibly misleading for 2 reasons. First, it
fails to acknowledge evidence-driven differential
adoption across subgroups that can inherently
change the overall value of medical technology.
Second, it does not allow for evaluating the
impact of policy alternatives that potentially influ-
ence the adoption behavior. Such policies may
include different levels of insurance coverage or the
implementation of practice guidelines to improve (or
discourage) the use of (non-) cost-effective technol-
ogy in practice. In essence, we argue that the incre-
mental value of technology should not be reflected
by a single metric, such as an ICER or a net benefit
metric, but rather tied to the particular policy that
would change the adoption of this technology.

Within this context, we first set up a conceptual
framework that could integrate heterogeneity in costs
and effectiveness across subgroups with their corre-
sponding adoption patterns into the existing metrics
in Section 2. Then, we show how this new framework
can be related to the existing value of information
framework in Section 3, followed by providing over-
arching metrics, ‘‘Loss with respect to Efficient
Diffusion (LED),’’ which can be used to prioritize pol-
icy alternatives in Section 4.

This framework extends previous research on hetero-
geneity in economic evaluation. For example, Phelps7

introduced the idea that variations in cost-effectiveness
ratios can be driven by heterogeneity, after which Coyle
and others8 quantified the potential health gains facili-
tated by making different decisions for different sub-
groups. Basu and Meltzer9 extended this concept to
decisions at the individual level to estimate the poten-
tial value of providing information on patient preference
to make individualized treatment decisions. Espinoza
and others10 showed how variability (observed hetero-
geneity) and uncertainty interacts through the static
value of heterogeneity and the dynamic value of hetero-
geneity. In this paper, we extended the existing litera-
ture by introducing policy-specific metrics, rather than
treatment-specific metrics, by incorporating adoption
behavior induced by such policies.

We provide an empirical illustration on how this
new framework could be applied in a real-world
example in Section 5 and conclude with a discus-
sion in Section 6.

CONCEPTUAL FRAMEWORK FOR
POLICY EVALUATIONS

Let us suppose that a social insurer aims to maxi-
mize a health outcome (e.g., quality-adjusted life

years, QALYs) given a fixed budget. The social
insurer faces a policy decision about whether to
provide coverage for a new treatment A for treating
a chronic illness v. the standard of care, as denoted
by B. Traditionally, one would conduct a CEA com-
paring treatment A v. B and estimate an ICER. If the
ICER is less than a cost-effectiveness threshold, l, it
indicates that paying for treatment A will provide
good value and vice versa. (Based on the con-
strained optimization framework, l can represent
the rate at which QALYs would be forgone else-
where in the healthcare sector if the new treatment
were paid for, given the fixed budget.) While these
ideas pervade in the cost-effectiveness literature,
there exists the implicit assumption behind the
interpretation of ICER, which assumes that, if cov-
ered, treatment A would be immediately used/
adopted by the same proportion of patients as in the
supporting RCT.

However, there is increasing recognition that het-
erogeneity in costs, effectiveness, and cost-effective-
ness should be considered.5,11,12 The role of evi-
dence on heterogeneity in influencing individual
decision making is relatively straightforward when
decision making is not centralized. In this setting,
the expected value of individualized care (EVIC)
may be calculated to establish the value of generat-
ing evidence to improve individual decision
making.9 However, the role of heterogeneity in pop-
ulation-level (centralized) policy decision making is
less clear. Some have argued that subgroup analyses
should be carried out in CEA when the goal is to
provide differential coverage across these sub-
groups.13,14 While new research has delved into the
methodological issues of estimating and presenting
heterogeneity in cost-effectiveness,10 little attention
has been given to how such information can be best
used to inform population-level decision making.

To illustrate the issues raised by heterogeneity in
cost-effectiveness, we assume that there are 3 sub-
groups (j = 1, 2, 3) indexed by an easily observable
characteristic, such as age. Let these estimates of
cost-effectiveness represented by ICERs be:

ICERj,AB5
E(CA,j)� E(CB,j)

E(QA,j)� E(CB,j)
j51, 2, 3 ð1Þ

Let ICER1, AB and ICER2, AB be both greater than l,
and ICER3, AB be less than l. (i.e., ICER1& 2, AB . l .

ICER3, AB). That is, compared to the threshold l,
treatment A would generate sufficient value for sub-
group 3 but not for subgroups 1 and 2. Despite this
evidence of heterogeneity, the traditional ICER that
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is used to inform a uniform coverage decision for
treatment A, and is assumed to be . l, can also be
written as:

ICER5

E CAð Þ � E(CB)

E QAð Þ � E(QB)
5

P
jfPj � ½E(CA,j)� E(CB,j)�gP
jfPj � ½E(QA,j)� E(CB,j)�g

.l ð2Þ

In the above formula, the size of these subgroups
is given as Pj � 1 for j = 1, 2, 3. It is assumed that
when treatment A is covered, it would be adopted
by all patients in all 3 subgroups, despite evidence
that it is not cost-effective for the first 2 subgroups.

However, a modified ICER can be presented by
rewriting the traditional ICER in the scenario that
this heterogeneity could lead to differential adop-
tion as:

ICERNEW 5P
jfPj � Dj � ½E(CA,j)� E(CB,j)�gP
jfPj � Dj � ½E(QA,j)� E(CB,j)�g

5

P
jfPj � Dj � E(DCj)gP
jfPj � Dj � E(DQj)g

ð3Þ

In the above formula, Dj represents the rate of
adoption of treatment A in the population subgroup
j, and can be estimated as following:

Dj5

PNj

i51 I(Di)

Nj
ð4Þ

where Nj is the size of the population subgroup j
who are receiving, or are expected to receive, one of
the comparators, and I(Di) indicates whether an
individual patient in the specific subgroup received
treatment A when given full coverage to the treat-
ment. This formulation can be easily adapted to
capture adoption over time, but we keep that impli-
cit for simplicity of illustration. If the rate of adop-
tion of the technology is same in all 3 subgroups,
we get back the original ICER as shown in eq. (2).
However, if the adoption rates are different, as
would be expected based on between-subgroup dif-
ferences in cost-effectiveness, the modified ICER
would be a better reflection of the realized value of
this technology in practice.

One can extend this concept to allow for evaluat-
ing different policies. For example, the ICERs from
an insurer perspective could be very different if the
underlying policies were to cover A at 50% cost-
sharing v. no coverage, holding coverage for treat-
ment B constant. This implies that the traditional
ICER, as expressed in eq. (1), cannot readily be used

to inform more nuanced forms of coverage policies
that many public and private payers contemplate,
whereas the modified ICER in eq. (3) can help
address this issue. Furthermore, if the social insurer
takes a narrower perspective as a payer, the ICER
under a policy k, which only accounts for a fraction,
fk, of the incremental costs (i.e., the rest being borne
by the patient as cost-sharing), is given as:

ICERpolicyk
5

P
jfPj � Djk(fk) � E(DCj) � fkgP

jfPj � Djk(fk) � E(DQj)g
ð5Þ

where Djk(fk) is the expected adoption of treatment
A in subgroup j under Policy k. Note that the
numerator includes not only a fraction of the incre-
mental costs borne by the payer but also the adop-
tion probability is tempered with cost-sharing in
line with price elasticities of demand. For simpli-
city, we assume that fk applies to incremental costs,
which assumes fk applies to both treatment A and
B. To relax this assumption, fk can be treated as a
treatment-specific parameter, fk,j. Also, CEA gener-
ally includes not only treatment costs but also other
monetary consequences in the numerator as well.
One can also separate out the treatment costs from
the other pecuniary consequences of treatment, and
apply the cost sharing to the former but not the
latter.

From a healthcare sector perspective, which
accounts for all cost of care irrespective of who
bears them, the full incremental costs will be
accounted for but the adoption rate would still be
driven by cost-sharing. Thus, from the perspective
of the healthcare sector:

ICERpolicyk
5

P
jfPj � Djk(fk) � E(DCj)gP
jfPj � Djk(fk) � E(DQj)g

ð6Þ

This new ICER formulation, as expressed in eq.
(5) or eq. (6), is better-suited for informing policy
making across alternative policy options in the pres-
ence of heterogeneity according to relative effective-
ness or costs, patient preference, or patient choice.15

Standard decision-making criteria, where the ICER
is compared to the cost-effectiveness threshold,
could be applied here. Note that the biggest differ-
ence between this and the traditional ICER is that
the traditional formulation provides only one ICER
for comparing treatment A to treatment B for each
subgroup. Under the new formulation, the ICER dif-
fers across policy decisions, since these policy deci-
sions could have differential effects on the rate of
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adoption of treatment A. This new metric allows
the adoption rates to be endogenous to the policy
decision itself, and consequently, generates a more
policy decision-relevant estimate of relative value.

Also, we argue that net benefit framework may be
better suited to make these multiple comparisons
from a policy evaluation perspective (see Appendix
A1 for more details). In this setting, the net mone-
tary benefits (NMB) under a policy k, which could
have implications for cost-sharing and/or adoption
of any treatment t within subgroup j, would be
given as:

NMBpolicyk
5
X

j

X
t

Pj � Djkt(fk) � E(Qjt) � l� E(Cjt)
� �� �

ð7Þ

Naturally, with multiple policy options, equation
(7) would be better suited to compare these policy
options. In fact, one can also account for differential
costs of policy implementation (MK) in this frame-
work and express eq. (7) as:

NMBpolicyk
5
X

j

X
t

Pj � Djkt(fk)�
�

E(Qjt) � l� E(Cjt)
� �

g �MK ð8Þ

The policy that maximizes NMB would be
deemed as the optimal policy given l. Therefore, the
policy-specific ICERs or NMBs could be used to
make policy decisions across a broad range of the
decision space. Evaluating medical technology
through the lens of specific policies changes the cal-
culus for expected realized value from that technol-
ogy. Consequently, it should also affect the expected
value of future research on this technology.

In the next section, we develop 2 concepts
termed ‘‘Efficient diffusion’’ and ‘‘Loss with respect
to efficient diffusion’’ in the following sections.
Most of these concepts largely build on the existing
framework developed by Coyle and others,8 Basu
and others,9 Fenwick and others,16 and Espinoza
and others;10 however, we expanded the existing
framework from a policy evaluation perspective.

EFFICIENT DIFFUSION UNDER UNCERTAINTY
V. CERTAINTY

Efficient Diffusion or Stratification

Efficient diffusion represents an ideal phenom-
enon where only those in the cost-effective sub-
group(s) fully adopt the new treatment and those in

the other subgroup(s) do not elect to adopt the new
treatment. This is the same phenomenon laid out by
Coyle and others8 and Espinoza and others10

around stratification or stratified care. Throughout
this paper, we use the term ‘‘diffusion’’ to highlight
the fact that such ideal stratification does not occur
overnight and the diffusion patterns can be driven
by policy alternatives.

If efficient diffusion can be achieved, then there
is no need to restrict coverage of treatment A for
everyone, as only those who would gain more than
the opportunity cost of consuming treatment A
would use treatment A. It produces the maximal
value from treatment A given current evidence.8

Thus, efficient diffusion implies that all technolo-
gies should be covered by insurance as long as those
technologies are used in an efficient manner, a sta-
ple concept in the first-best solution of health insur-
ance markets.17,18 In the presence of multiple treat-
ments (t = 1,2,..T), let efficient diffusion for any
treatment t within a subgroup j be characterized
using a binary indicator D�jt, depending on whether
that treatment is cost-effective in that subgroup. (D*
still represents the same conceptual adoption rate
as D in the previous section. The only difference is
that D* represents a theoretical and ideal phenom-
enon where the adoption of technology A is per-
fectly diffused to a specific subgroup or perfectly
not adopted by the group. The asterisk highlights
this ideal situation. D* can only take the value of
either 1 or 0 for a subgroup, whereas D can be a con-
tinuous value between 0 to 1.)

There could be 2 types of efficient diffusion—one
under current information, which includes the
inherent uncertainty present in this evidence, and
the other under perfect information, where all
uncertainties are resolved. We now describe these 2
scenarios.

Efficient Diffusion under Current Information
(EDCI)

Under current information, efficient diffusion
represents perfect implementation (i.e., subgroup-
level perfect adoption of technologies) based on
what we currently know about the cost-effective-
ness of new medical technology. It also implies
that, given current evidence, if NMBj\0, 8j, then it
is sufficient to forgo coverage decisions for new
treatment A, as it is not cost-effective for any
subgroup.
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Under our stylized example of 2 treatments and 3
subgroups, efficient diffusion would imply that,
even with full coverage of treatment A for all sub-
groups, only those in the third subgroup fully adopt
treatment A (i.e., D�3, A51 and D�3, B50), whereas
those in the first and second subgroups entirely
reject treatment A (i.e., D�1& 2, A50 and D�1& 2, B51).
Under this scenario, the NMB arising out of EDCI is
given as:

NMBEDCI5P1 � E Q1B � l� C1Bð Þ½ �
1P2 � E Q2B � l� C2Bð Þ½ �1P3 � E Q3A � l� C3Að Þ½ � ð9Þ

In a more generalized formula, the NMB under
EDCI can be expressed as:

NMBEDCI 5
X

j

X
t

Pj � D�jt � E(Qjt) � l� E(Cjt)
� �n o

5
X

j
Pj �maxt E(Qjt � l� Cjt)

� �
ð10Þ

Equation (10) is equivalent to the metrics previ-
ously described as the total net benefits by Coyle
and others8 and Espinoza and others.10 It also repre-
sents a weighted average of maximum expected net
benefit across subgroups, which is the second term
of the traditional expected value of perfect informa-
tion (EVPI) expression.19 Note that this metric in eq.
(10) is not policy-specific, as it represents the best
one could do under current information through the
perfect implementation of current evidence.

Efficient Diffusion under Perfect Information
(EDPI)

Given the existing uncertainty in NMBs under cur-
rent information, there is a possibility that even perfect
implementation of current evidence would incur some
losses. This is tied to the fact that whatever decision is
deemed optimal under current information, it may be
suboptimal when uncertainty is resolved. That is,
research generating more precise estimates of existing
evidence could induce more appropriate adoption of
the new treatment across subgroups.

With the stylized example, current evidence sug-
gests that new treatment A is cost-effective in sub-
group 3 but not in subgroup 1 or 2. However, there
is uncertainty associated with the incremental net
monetary benefit (INMB) between the new treat-
ment A and standard of care B for each subgroup.
For example, let us state that the uncertainty is least
for subgroup 3, and the results favor treatment A,

but there is uncertainty nevertheless. To account for
the existing uncertainty, we generate the cumula-
tive distribution function for the INMB between
A and B for each subgroup as FINMBj�AB

(x) =
Pr(INMBj,AB � x), given l. Under this scenario, the
probability that future research could change the
current decision on the efficient use of a new treat-
ment A is given as:

For Subgroup 1, Current Decision: Use B; Pr(A is

optimal) = 1 -FINMB1,AB
(0)

For Subgroup 2, Current Decision: Use B; Pr(A is
optimal) = 1 -FINMB2,AB

(0)

For Subgroup 3, Current Decision: Use A; Pr(B is

optimal) = FINMB3,AB
(0)

Therefore, efficient diffusion that accounts for
both today’s evidence and the expected value of
future research is given as:

NMBEDPI5P1 � f Q1B � l� C1Bð Þ1 1� FINMB1,AB
0ð Þ

� �
� E

INMB1,AB INMB1,AB.0jð Þg
1P2 � f Q2B � l� C2Bð Þ1 1� FINMB2,AB

0ð Þ
� �

�
E INMB2,AB INMB2,AB.0jð Þg
1P3 � f Q3B � l� C3Bð Þ1 1� FINMB3,AB

0ð Þ
� �

�
E INMB3,AB INMB3,AB.0jð Þg

5
X

j
Pj �

1� FINMBj,AB
0ð Þ

� �
� E NMBj,AjINMBj,AB.0
� �

1 FINMBj,AB
0ð Þ

� �
� E NMBj,BjINMBj,AB<0
� �

( )

ð11Þ

Equation (11) indicates that, for each subgroup,
there is some probability that the current decision to
promote full adoption of A v. B as part of efficient
diffusion may be wrong. And if we completely
resolve this uncertainty, then we truly know which
treatment to adopt for each subgroup. Thus, the
expected NMB from efficient diffusion under perfect
information (EDPI) would be an expectation over
treatment-specific maximum NMBs when uncer-
tainty is completely resolved. Note that this repre-
sents the weighted average of expected maximum
net benefit across subgroups, which is the first term
of the traditional EVPI expression; albeit, at the
subgroup-specific level. This concept is also previ-
ously recognized by Espinoza and others10 but, in
our framework, it can be expressed in general as:

NMBEDPI5
X

j
Pj � E maxt Qjt � l� Cjt

� �� �
ð12Þ
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LOSS WITH RESPECT TO EFFICIENT DIFFUSION
(LED) METRICS

To tie the existing value of information frame-
work with the new metrics that we are proposing
that incorporate policy-driven rates of selective
adoption, we consider 3 different LED metrics. LED
metrics estimate how much the realized value of
policy alternatives deviates from the ideal scenario,
called efficient diffusion or stratification (i.e.,
expressed in positive terms, such that the higher
the value, the higher the loss, and the less attractive
the policy). Figure 1 provides a graphic representa-
tion of new metrics along with the summary of
these metrics.

LEDEVPI5NMBEDPI �NMBEDCI ð13Þ

LEDPolicyK
5NMBEDCI �NMBPolicyK

ð14Þ

LED�PolicyK
5NMBEDPI �NMBPolicyK

ð15Þ

LEDEVPI expresses the loss in expected value
from efficient diffusion with perfect information
(i.e., decision certainty) v. efficient diffusion with
current information (i.e., decision uncertainty).
Following eq. (10) and eq. (12), LEDEVPI is identical
to traditional EVPI metric:19

LEDEVPI 5
X

j
Pj � E maxt Qjt � l� Cjt

� �� �
�
X

j
Pj �maxt E(Qjt � l� Cjt)

� �
ð16Þ

Here, it is interpreted as the maximum value of
future research that would resolve uncertainty in
each of the subgroups. This concept has also been
presented as the dynamic value of heterogeneity by
Espinoza and others.10 This value is a comparison
of two hypothetical scenarios involving efficient
diffusions. The true value of future research could
be different from what is typically expressed in
EVPI calculations, and could depend on the current
policy in place. We will now develop a second LED
metric to exemplify this point.

LEDPolicyK
expresses the expected incremental loss

under a specific policy k with respect to NMBEDCI,
which is given as:

LEDPolicyK
5
X

j

X
t

Pj � D�jt � Djkt(fkt)
h i

�
n

E(Qjt) � l� E(Cjt)
� �

g ð17Þ

In this formulation, irrespective of the value of
fkt, ½D�jt � Djkt(fkt)� � 0 in subgroups where D�jt = 0

(indicating over-adoption in these subgroups) while

D�jt � Djkt fktð Þ
h i

� 0 in subgroup where D�jt = 1 (indi-

cating under-adoption in these subgroups). The
optimal policy decision, therefore, is based on
choosing the one that minimizes this loss given the
threshold l and current evidence, as long as the
‘status quo’ (do-nothing) policy is included in these
comparisons.

PolicyK�5 argmin
k

LEDPolicyk
5 argmax

k

NMB(Policyk)

ð18Þ

The utility of the LEDPolicyK
metric mirrors the uses

of the value of information metrics to prioritize imple-
mentation or research investments. For the optimal
policy k*, LEDPolicyk� represent the unrealized value
due to over- and under-adoption of technologies in
different subgroups driven by policy k*, given current
evidence. This loss may be caused by either imperfect
implementation (i.e., subgroup-level suboptimal
adoption due to imperfect translation of current evi-
dence into practice) or imperfect information (i.e.,
suboptimal adoption due to too much uncertainty in
existing information to make an optimal decision) or
both. Therefore, depending on understanding the
rationale for suboptimal adoption patterns, one could
determine future investments on either the better
implementation of current evidence or the generation
of more precise estimates through research to capture
this unrealized value (Appendix A2 for more details).

Finally, LED�PolicyK
would represent the expected

loss relative to the expected value of perfection (i.e.,
perfect implementation with perfect information)
under the policy k.16 That is,

LED�PolicyK
5LEDEVPI � LEDPolicyK

ð19Þ

In the following section, we present evidence to
support our novel metrics on the selective adoption
of new technology under heterogeneous informa-
tion. We then illustrate how our NMBPolicyK

and LED
metrics would produce different suggestions for an
optimal policy where we have accounted for such
subgroup-specific adoption rates.

EMPIRICAL EXAMPLE

Background

The primary goal of this empirical example is to
illustrate how this new framework could be applied
in a real-world example. As an illustration, we
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chose the adoption of combination lipid therapy v.
monotherapy among males and females with type 2
diabetes mellitus (T2DM) and mixed dyslipidemia
based on 3 major criteria: 1) clinical evidence of
heterogeneous treatment effects by subgroups
based on a previous clinical trial (ACCORD
study);20 2) subgroup-specific CEA results from a
prior economic evaluation study;21 and 3) the
availability of datasets to estimate the rates of
adoption of the intervention. Using the framework
and metrics suggested, we evaluate the economic
returns from policy alternatives for combination
therapy with a statin plus a fibrate compared with
statin monotherapy in this population among pri-
vately insured patients. Appendix A3 provides
greater details on the background, estimation pro-
cess, and data analysis.

Methods

We incorporated the clinical evidence presented
by the ACCORD study and the reported subgroup–
specific ICER estimates of combination therapy
with a statin plus a fibrate (denoted as treatment A)
compared with statin monotherapy (denoted as the
standard of care, treatment B) amongst males and

females (j =2).21 We estimated subgroup-specific
rates of adoption and the size of the relative popula-
tion using the Truven Health Marketscan data-
bases.22 Then, we took the observed adoption beha-
vior to address policy questions around coverage for
the combination therapy.

We start by comparing the traditional overall
ICER and INMB estimate in this population to that
under the current status-quo policy, defined below,
based on observed adoption rates, from a healthcare
sector perspective. Also, we consider the corre-
sponding ICERs and INMBs under alternative cover-
age policies. For the sake of illustration, we assume
that the cost-effective threshold (CET) is $45,000/
QALY, which corresponds to the 20,000-30,000/
QALY threshold used by National Institute for
Health and Care Excellence (NICE) in England and
Wales. Specifically, we:

1. Report the traditional ICER and INMB following eq.

(2), which is just the weighted average of subgroup-

specific ICERs or INMBs, respectively. We use the

estimated subgroup sizes from the Marketscan pop-

ulation to provide weighted estimates.

2. Report the modified ICER and INMB following eq.

(3), where the differential adoption rate of the

Figure 1 Graphic representation of new metrics with summary of new metrics and equivalent metric/interpretation. LED*POLICY,

expected incremental loss under a specific policy k relative to the Expected Value of Perfection (EVP) (i.e., maximum value of future

research and improved implementation); LEDEVPI, Expected Value of Perfect Information (EVPI) (i.e., maximum value of future research

that would resolve all uncertainty); LEDPOLICY, expected incremental loss under a specific policy k relative to the EVPIM (i.e., maximum
value of improved implementation; there is a need to understand the rationale of suboptimal adoption patterns); NMBEDCI, Expected

Value of Perfect Implementation (EVPIM) (i.e., perfect implementation based on current evidence; suboptimal decision is possible);

NMBEDPI, Expected Value of Perfection (EVP) (i.e., perfect implementation with no decision uncertainty).
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combination therapy was also incorporated.

However, this modified ICER or INMB was

assumed to reflect a ‘‘status-quo policy’’ (#1),

where both the combination therapy and statin

monotherapy were offered at a 20% coinsurance

rate (i.e., fk = 0.80), as reflective of the average

health plan coverage rate in the Marketscan

database.

3. Report the modified ICER and INMB following eq.

(6), dubbed as ‘‘Policy #2’’, where full coverage of

the combination therapy would have been pro-

vided (i.e., fk = 1.00), while coverage of the statin

monotherapy remained unchanged at 20% coin-

surance rate. For simplicity, we assume the same

price elasticity of demand for a prescription fill

for both subgroups. Average estimates of price-

elasticity of the probability of fill were obtained

from a recent study on value-based insurance

design and were estimated to be -0.26.23

4. A ‘‘hypothetical policy (#3)’’ scenario, where full

coverage of the combination therapy would have

been provided (i.e., fk = 1.00), while holding cov-

erage of the monotherapy constant, and an imple-

mentation action (through an education outreach

program) increased adoption of the combination

therapy by 200% among males and decreased

adoption of combination therapy by 100% among

females. Although not included here, in a real

application of such an approach, the cost of such

a program should also be accounted for.

We also compare how the LED metrics vary
under each of these scenarios. First, we aimed to
incorporate uncertainty around the cost-effective-
ness estimates measured for each subgroup (male
and female). Unfortunately, the original CEA21 did
not report uncertainty estimates. Thus, for illustra-
tion, we simulated the standard errors to be 10%
and 75% of the mean QALY and cost, respectively.
We then generated a distribution of the expected
INMB of the combination therapy compared to the
statin monotherapy, based on 100,000 simulated
values, and estimated the LED metrics using equa-
tions (13), (14) and (15).

Results

Traditional v. Modified Metrics under Alternative
Policy Scenarios

Table 1 presents the results comparing traditional
v. modified ICER and NMBs under alternative pol-
icy scenarios. Under the traditional approach, the

ICER of combination therapy over statin monother-
apy is estimated to be $46,000/QALY. Under the
pre-specified threshold ($45,000/QALY), combina-
tion therapy would not be deemed cost-effective.
Consequently, statin monotherapy should be
adopted, and it produces a per-patient NMB of
$315,869.

Policy 1: Status-quo policy. Under the status-
quo policy of providing coverage for the combina-
tion therapy with a coinsurance rate of 20%, the
use of this combination therapy is estimated to be
7.2% among the males and 4.3% among the
females in the Marketscan database. Hence, in line
with evidence, we empirically observe that males
adopt the combination therapy at a higher rate
than females given that the benefits to males are
higher than to females. When these differential
adoption rates were incorporated, the estimated
ICER is $41,733/QALY, and the combination ther-
apy would be deemed cost-effective. The per-
patient NMB in the population under the status
quo policy is $315,910.

Policy 2: Full coverage of the combination
therapy. Under Policy 2, if the coverage of the
combination therapy would have been increased to
100% (i.e., coinsurance rate = 0%), the share of
use of the combination therapy is estimated to be
7.5% among males and 4.5% among females,
which is not that much different to the status-quo
policy. This is primarily because—as widely dis-
cussed following the RAND health insurance
experiment—pharmaceuticals are very price inelas-
tic;24,25 in addition to the relatively low baseline
adoption rates under the status-quo policy.
Consequently, the ICER for combination therapy
under Policy 2 is $41,766/QALY, and the per-
patient NMB in the population under the Policy #2
is $315,911.

Policy 3: Full coverage of the combination
therapy and Outreach Program. Finally, under
the hypothetical policy, where not only combina-
tion therapy is fully covered, an educational out-
reach program is expected to increase adoption of
combination therapy among males to 23% and to
decrease in females to 2.3%, the ICER would be
$34,848/QALY, and the NMB per patient would be
$316,214. Obviously, one should account for the
costs of delivering such an outreach program. For
example, if the program costs about $200 per
patient, the NMB decreases to $316,014, but still
is the best policy among all the alternatives
considered.
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Efficient Diffusion under Current Information v.
Perfect Information and LED Metrics

Table 2 reports the NMBs under efficient diffu-
sion and current and perfect information along with
the policy-specific LED metrics. Under the current
information, efficient diffusion would entail the full
adoption of the combination therapy among males
(i.e., DM = 1 and DF = 0) and no use among females.
If achieved, the NMB per patient in the population
is estimated to be $317,559 (NMBEDCI, Table 2, eq.
(10)). However, in this case, we acknowledge the
possibility of the suboptimal decision because of
potential uncertainty around the expected NMB.
Based on the distributions assumed in this stylized
example, we found that there was 32% chance of
making a wrong decision for males (i.e., 32%
chance that the statin therapy would provide better
value for males instead of the combination therapy).
For females, there was a 27% probability that the
combination therapy would rather provide more
value than the statin therapy, which is determined
by an optimal choice strictly based on the expected
NMB threshold. If all uncertainty were to be resolved
through future research, we could eliminate the pos-
sibility of making a suboptimal decision. Under this
scenario of perfect information and perfect imple-
mentation, following eq. (11), NMBEDPI is estimated
to be $366,770.

The difference between NMBEDPI and NMBEDCI,
which represents LEDEVPI, is estimated to be
$49,211 per patient and reflects the expected value
of perfect information with each of the subgroups.
The large value of information is driven by the
uncertainty in costs that was assumed. Comparing
the NMBEDCI to each of the NMBPolicy provides a
policy-specific estimate of LED, which could
be interpreted as the expected value of implementa-
tion. Naturally, the policy with the highest
NMBPolicy also has the lowest LEDPolicy. To what
extent this value represents the value of future
implementation v. research would depend on
understanding the decision-making rationale, as
explained in Section 4 and Appendix A2. The total
value of perfection (i.e., perfect implementation and
perfect information), under the hypothetical policy,
is estimated to be $50,556.

DISCUSSION

We propose a new economic evaluation frame-
work to estimate the realized value of medical tech-
nology through a policy lens. First, we argue that
standard cost-effectiveness metrics (e.g., ICERs)
may be misleading if there are differential adoption
rates in different subgroups due to heterogeneity in
relative costs or effectiveness. Some have argued
that subgroup analyses should be carried out in

Table 2 Economic Returns from Policy Alternatives based Predicted Diffusion

Parameters

Policy 1:

Status-quo Policy

(fk = 0.80)

Policy 2:

Full Coverage

(fk = 1.00)

Policy 3:

Full Coverage +

Education Programb

EDCI

eq. (10) EDPI eq. (11)

Male PM 0.533 0.533 0.533 0.533 0.533
DM 0.072 0.075 0.23 1 -
F(INMBAB)a - - - - 0.32

Female PF 0.467 0.467 0.467 0.467 0.467
DF 0.043 0.045 0.023 0 -
F(INMBAB)a - - - - 0.73

NMBPOLICY K $315,910 $315,911 $316,214 $317,559 $366,770
LEDEVPI (Eq. 16)c - - - $49,211 -
LEDPOLICY K $1,649 $1,648 $1,345 - -
LED*

POLICY K $50,860 $50,859 $50,556 - -

EDCI, efficient diffusion under current information; EDPI, efficient diffusion under perfect information; NMB, net monetary benefit; ICER, incremental
cost-effectiveness ratio; INMB, incremental net monetary benefit; LED, loss in relative to efficient diffusion; LED*, expected incremental loss under a
specific policy k relative to the Expected Value of Perfection (EVP).
aAB represent a comparison between treatment alternatives: here, the combination therapy of statin + fibrate v. the statin monotherapy (i.e., INMB
of the combination therapy in relative to the statin monotherapy).
bHypothetical policy assumes fk = 1.00 and implementation action will increase adoption of the combination therapy by 200% among males and
decrease adoption of combination therapy by 50% among females.
cLEDEDPI is equivalent to the traditional expected value of perfect information (EVPI), representing the opportunity costs of the suboptimal decision
caused by existing uncertainty. Also, this can be understood as a maximal value of investing in further research to reduce uncertainty.
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CEA when the goal is to provide differential cover-
age across these subgroups.13,14 One could concei-
vably implement subgroup-specific coverage deci-
sions to overcome the limitations of decision
making using a single overall ICER. However, in
many cases, the number of subgroups could be
large, and there may not be easy ways to implement
such heterogeneous policies due to ethical and
equity concerns and also transaction costs.10

Although budget impact analyses (BIA)—as dis-
tinct from CEA—have sometimes incorporated
potential adoption rates over time to inform afford-
ability, the corresponding impacts on the effective-
ness side have largely been ignored.26 Moreover,
even BIA does not typically account for evidence-
driven differential adoption across subgroups. Our
framework provides summary measures of cost-
effectiveness at the population-level, after incorpor-
ating subgroup-specific adoption patterns to help
population-level decision making when subgroup-
specific decision making is not possible.

We highlight the importance of incorporating
policy-specific adoption rates of technology into the
existing metrics. This framework can be readily
applied to compare the economic value of policy
options that may often encompass not only binary
coverage decisions but also cost-sharing, implemen-
tation policies, and investments in research.27 For
example, this framework may provide incentives for
manufacturers to provide reliable evidence about
heterogeneity so that a single overall ICER based on
uniform adoption does not limit the market access
for a product that may provide a good value for cer-
tain subgroups where differential adoption is
anticipated.

We contribute to the literature on heterogeneity
in economic evaluation and the value of informa-
tion approaches. While the expected value of indi-
vidualized care focused on estimating the value of
generating evidence at the individual, decision-
making level,9 our framework emphasizes the role
of heterogeneity in population-level (centralized)
policy decision making through creating policy-
specific metrics. Moreover, we extended the exist-
ing literature by introducing policy-specific metrics,
rather than treatment-specific metrics, by incorpor-
ating adoption behavior induced by such policies,
and by allowing for policies (e.g., research invest-
ments) to change evidence itself.

There are some limitations to this new frame-
work. First, this framework requires rich informa-
tion of heterogeneous effects and subgroup-specific
results to predict behavioral changes in those

groups. Such information is often not readily avail-
able. However, with ongoing efforts to increase clin-
ical studies to focus on heterogeneity in compara-
tive effectiveness and patient-centered outcomes,
we expect that individual-level patient data and
pre-specified subgroup results would provide more
useful information for this framework in the near
future. We encourage CEA to report subgroup-level
results that would help to estimate the realized
value of policy decisions more precisely.

Another important limitation is the inability to
predict future rates of adoption of new technology.
Although we estimated adoption patterns retrospec-
tively, an understanding of the potential changes in
adoption in the future would be important to imple-
ment this framework for prospective evaluation
(e.g., how the adoption of new technology would be
changed in response to new clinical evidence).
Moreover, we used a constant adoption rate; realis-
tically, one should view the rate of adoption to be
time-varying.

Certain policy implementation can also affect
supply side factors that can change the adoption of
certain technologies. This type of general equili-
brium argument is too broad and out of the scope of
this paper, but one can evaluate a policy alternative
that specifically addresses the supply-side effect
and compare policy alternatives based on the
demand side.

Finally, in the empirical illustration, we ignore
costs of implementing a new policy. However, as
with value-of-information methods, one could
recognize that implementing a new policy would be
worthwhile if the potential gain in the LED metric
is greater than the costs of implementation. Also,
we presented metrics per patient. In the real appli-
cation of these methods, results should be pre-
sented from a population perspective and for real-
policy options, rather than the hypothetical policy
alternatives considered in our example.

The above limitations notwithstanding, this
novel framework will be useful to evaluate the rea-
lized value of medical technology under various
decision options. This framework produces metrics
that are better aligned with specific policy decisions
under considerations for a specific technology, and
so can help improve future decisions.
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