Selective degradation of Aux/IAA proteins modulates plant development

Thomas Vain¹, Noel Ferro², Deepak Kumar Barange¹, Qian Ma¹, Mattias Thelander³, Barbora Pařízková⁴, Ondřej Novák⁴, Siamsa M. Doyle¹, Alexandre Ismail⁵, Per Anders Enquist⁶, Adeline Rigal¹, Yi Zhang⁷, Malgorzata Langowska¹, Karin Ljung¹, Judy Callis⁸, Fredrik Almqvist⁹, Mark Estelle⁷, Laurens Pauwels¹⁰ and Stéphanie Robert¹

¹Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, ²Institute of Physical and Theoretical Chemistry, University of Bonn, ³Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology in Uppsala, ⁴Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany CAS, ⁵Sup'Biotech, IONIS Education Group, ⁶Laboratories for Chemical Biology Umeå, Chemical Biology Consortium Sweden, Department of Chemistry, Umeå University, ⁷University of California San Diego and Howard Hughes Medical Institute, ⁸University of California, Davis Department of Molecular and Cellular Biology, ⁹Umeå University, Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden, ¹⁰Department of Plant Systems Biology, VIB

Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors are targeted for degradation by the SKP1- CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). Here, we report four small molecules named DEVELOPMENTAL REGULATORS (DRs) requiring AXR1 and SCF^{TIR1/AFB} to modulate plant development. Three DR molecules trigger selective auxin responses at transcriptional, biochemical and morphological levels which are explained by their ability to promote the interaction between TIR1 and a specific subset of Aux/IAA proteins. These results demonstrate the potential of selective auxin agonists to reprogram plant development through a selective degradation of the Aux/IAA transcriptional repressors.