Regulation of nitric oxide by phytoglobins
Kim Hebelstrup¹
¹Aarhus University

Phytoglobins (a.k.a. plant hemoglobins) are present in all known plant genomes. Three classes (1 to 3) of phytoglobins have been identified. Functions of the class 3 type are mostly unknown, whereas the class 1 and 2 phytoglobins have been associated with modulation of nitric oxide (NO) in developmental processes and in stress responses in different plant species. Under normoxic conditions the gene expression pattern of phytoglobins is related to cell- and tissue-specific regulation of NO levels in responses to different environments and developmental stages. However, during hypoxic stress conditions class 1 phytoglobin gene expression is highly upregulated in all plant tissues, where phytoglobin plays a role in reducing nitrogen loss through NO emission. NO is a central molecule in the distinct signaling pathways of the responses towards necrotrophic or biotrophic pathogens, and phytoglobin gene overexpression or gene silencing interferes with progression of infections in very different types of plant-pathogen interactions in a pattern related to modulation of NO levels.

References